激光淬火淬硬层均匀,硬度高,工件变形小,加热层深度和加热轨迹容易控制,易于实现自动化,不需要像感应淬火那样根据不同的零件尺寸设计相应的感应器,尤其重要的是激光淬火前后,工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。经过近几年的技术研究,目前,我公司已掌握激光淬火关键技术,并应用于汽车覆盖件模具的表面处理。
一、激光淬火的工作原理
激光淬火主要原理是金属材料中自由电子吸收激光光子能量,温度升高到共析点以上、熔点以下,发生固态相变反应,通过基体传热实现自冷淬火,在零部件表面有限深度内发生的固态相变的过程。
二、激光淬火应用于模具淬火
(1)拉延模具淬火根据拉延模具成形的特点,与板料接触的凸R位置和板料流动较大的面需要有高的耐磨性,即高硬度。拉延模型面上的凸R一般都需要进行淬火处理。
由于淬火区域大,常规的火焰淬火或感应淬火都会使工件产生较大的热变形,导致模具精度无法保证,进而需要增加其他的工艺手段来保证,这样势必造成模具的加工周期长,且易出现硬度不稳定的情况。因此,采用激光淬火方式,这样工件变形极小,甚至无变形,不需增加其他工艺手段即可达到质量要求。
(2)镶件表面淬火汽车模具上的镶件表面淬火,主要指切边模的切边镶件刃口淬火和整形模的整形镶件整形部位淬火。对于切边镶件或整形镶件,常规火焰淬火后镶件变形大,需进行淬火后的去变形二次加工,工件制作周期长,且淬火硬度难控制。特别是整形镶件,由于需要对整形面进行淬火,淬火面积大,极易产生回火的情况,从而导致型面硬度不合格。激光淬火可以有效地控制镶件变形和硬度不合格的问题。镶件采用激光淬火后硬度稳定、变形很小,实现了精加工后淬火的制造工艺,有效提升了加工效率,节约了加工成本。
(3)应用激光淬火优化模具加工工艺与传统的火焰淬火相比,采用激光淬火可以优化模具加工工艺,从而有效减少制造周期,低制造成本,下面是火焰淬火和激光淬火的工艺流程比较。
火焰淬火模具加工工艺流程:型面粗加工、半精加工→火焰淬火→加工去变形→钳工组装→型面精加工→调试研配出件。
激光淬火模具加工工艺流程:型面粗加工、半精加工→钳工组装→型面精加工→激光淬火→调试研配出件。
采用激光淬火的模具,淬火前型面精加工到位,这样既避免了去变形加工工序,又提升了精加工的效率。
(4)激光淬火对模具表面质量的影响相对于传统淬火方式,采用激光淬火方式的模具型面变形很小、硬度均匀,因此工艺上采取型面精加工到位后再进行淬火。采用火焰淬火的工件变形大,加工余量不均匀,变形大的区域出现淬火硬度不足甚至不可控的情况。而采用激光淬火的工件几乎没有变形,硬度均匀且可控,因此工艺上采取精加工到位后再进行淬火。
三、结束语
全球工业即将迈入“工业4.0”的大时代,汽车行业面临着终端客户对产品信息化、智能化、个性化以及绿色环保等诸多需求,主机厂对车身模具的开发周期要求越来越短、质量要求越来越高。激光淬火技术在确保稳定的淬火硬度和质量的情况下,有效地缩短了模具制造周期,节约了制造成本,同时还解决了传统热处理工艺无法解决的许多难题。因此,激光淬火技术必将在汽车模具中得到越来越广泛的应用。